Subtracting vectors
Subtracting a vector is the same as adding a negative version of the vector (remember that making a vector negative means reversing its direction).
\(\left( \begin{array}{l} a\\ b \end{array} \right) - \left( \begin{array}{l} c\\ d \end{array} \right) = \left( \begin{array}{l} a - c\\ b - d \end{array} \right)\)
Look at the diagram and imagine going from X to Z. How would you write the path in vectors using only the vectors \(\overrightarrow {XY}\) and \(\overrightarrow {ZY}\)?
You could say it is vector \(\overrightarrow {XY}\) followed by a backwards movement along \(\overrightarrow {ZY}\).
So we can write the path from X to Z as:
\(\overrightarrow {XY} - \overrightarrow {ZY} = \overrightarrow {XZ}\)
Written out in numbers it looks like this:
\(\left( \begin{array}{l} 4\\ 2 \end{array} \right) - \left( \begin{array}{l} 1\\ 2 \end{array} \right) = \left( \begin{array}{l} 3\\ 0 \end{array} \right)\)
Now try the example questions below.
Question
If \(x = \left( \begin{array}{l} 1\\ 3 \end{array} \right),y = \left( \begin{array}{l} - 2\\ 4 \end{array} \right)and\,z = \left( \begin{array}{l} - 1\\ - 2 \end{array} \right)\), find:
- \(- y\)
- \(x - y\)
- \(2x + 3z\)
- \(\left( \begin{array}{l} 2\\ - 4 \end{array} \right)\) (Did you remember to change the signs?)
- \(\left( \begin{array}{l} 1\\ 3 \end{array} \right) - \left( \begin{array}{l} - 2\\ 4 \end{array} \right) = \left( \begin{array}{l} 1 - - 2\\ 3 - 4 \end{array} \right) = \left( \begin{array}{l} 3\\ - 1 \end{array} \right)\)
- \(2\left( \begin{array}{l} 1\\ 3 \end{array} \right) + 3\left( \begin{array}{l} - 1\\ - 2 \end{array} \right) = \left( \begin{array}{l} 2\\ 6 \end{array} \right) + \left( \begin{array}{l} - 3\\ - 6 \end{array} \right) = \left( \begin{array}{l} - 1\\ 0 \end{array} \right)\)
Question
For vectors \(u = \left( {\begin{array}{*{20}{c}} 2\\ 5\\ 9 \end{array}} \right)and\,v = \left( {\begin{array}{*{20}{c}} 7\\ 3\\ { - 4} \end{array}} \right)\) calculate, u + v.
u + v \(= \left( {\begin{array}{*{20}{c}} 2\\ 5\\ 9 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 7\\ 3\\ { - 4} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {2 + 7}\\ {5 + 3}\\ {9 + ( - 4)} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 9\\ 8\\ 5 \end{array}} \right)\)
More guides on this topic
- Determine the gradient of a straight line
- Circle geometry
- Calculating the volume of a standard solid
- Applying Pythagoras Theorem
- Applying the properties of shapes to determine an angle
- Using similarity
- Working with two-dimensional vectors
- Working with three-dimensional coordinates
- Calculating the magnitude of a vector
- An Approximate History of Co-ordinates