91热爆

Calculating standard form without a calculator

Adding and subtracting

When adding and subtracting numbers, you have to:

  1. convert the numbers from standard form into ordinary numbers
  2. complete the calculation
  3. convert the number back into standard form

Example

Calculate \((4.5 \times 10^4) + (6.45 \times 10^6)\).

\(= 45,000 + 6,450,000\)

\(= 6,495,000\)

\(= 6.495 \times 10^6\)

Multiplying and dividing

When multiplying and dividing you can use index laws:

  1. multiply or divide the first part of the numbers
  2. apply the index laws to the powers of 10
  3. check whether the first part of the number is between 1 and 10

Example 1

Work out \((3 \times 10^3) \times (3 \times 10^9)\).

Multiply the first numbers 鈥 which in this case is \(3 \times 3 = 9\).

Apply the index law to the powers of 10:

  • \(10^3 \times 10^9 = 10^{3 + 9} = 10^{12}\)
  • \((3 \times 10^3) \times (3 \times 10^9) = 9 \times 10^{12}\)

As 9 is between 1 and 10, this number is in standard form.

Example 2

Work out \((4 \times 10^9) \times (7 \times 10^{-3})\).

Multiply the first numbers \(4 \times 7 = 28\).

Apply the index law to the powers of 10

  • \(10^9 \times 10^{-3} = 10^{9 + -3} = 10^6\)
  • \((4 \times 10^9) \times (7 \times 10^{-3}) = 28 \times 10^6\)

28 is not between 1 and 10, so \(28 \times 10^6\) is not in standard form. To convert this to standard form, divide 28 by 10 so that it is a number between 1 and 10. To balance out this out, multiply the second part by 10 which gives 107.

\(28 \times 10^6\) and \(28 \times 10^7\) are equivalent but only \(2.8 \times 10^7\) is written in standard form.

So: \((4 \times 10^9) \times (7 \times 10^{-3}) = 2.8 \times 10^7\)

Question

Calculate \((2 \times 10^7) \div (8 \times 10^2)\).