91热爆

Polygons

A is a shape with at least three sides.

Types of polygon

Polygons can be regular or irregular. If the angles are all equal and all the sides are equal length it is a regular polygon.

Regular and irregular polygons

Interior angles of polygons

To find the sum of interior angles in a polygon divide the polygon into triangles.

Irregular pentagons

The sum of interior angles in a triangle is 180掳. To find the sum of interior angles of a polygon, multiply the number of triangles in the polygon by 180掳.

Example

Calculate the sum of interior angles in a pentagon.

A pentagon contains 3 triangles. The sum of the interior angles is:

\(180 \times 3 = 540^\circ\)

The number of triangles in each polygon is two less than the number of sides.

The formula for calculating the sum of interior angles is:

\((n - 2) \times 180^\circ\) (where \(n\) is the number of sides)

Question

Calculate the sum of interior angles in an octagon.

Calculating the interior angles of regular polygons

All the interior angles in a regular polygon are equal. The formula for calculating the size of an interior angle is:

\(\text{interior angle of a polygon} = \text{sum of interior angles} \div \text{number of sides}\)

Question

Calculate the size of the interior angle of a regular .

Hexagon with all internal angles highlighted

Exterior angles of polygons

If the side of a polygon is extended, the angle formed outside the polygon is the exterior angle.

The sum of the exterior angles of a polygon is 360掳.

External angles produced along the sides of a pentagon equal 360 degrees

Calculating the exterior angles of regular polygons

The formula for calculating the size of an exterior angle is:

\(\text{exterior angle of a polygon} = 360 \div \text{number of sides}\)

Remember the interior and exterior angle add up to 180掳.

Question

Calculate the size of the exterior and interior angle in a regular .

Pentagon with internal and external angles highlighted