91热爆

Reflections of graphs

Graphs can be reflected in either the \(x\) or \(y\) axes.

Reflections in the x-axis

If \(f(x) = x^2\), then \(-f(x) = -(x^2)\).

Graph showing plots of -f(x)=-(x^2) & f(x)=x^2

Reflections in the y-axis

If \(f(x) = x^3\), then \(f(-x) = (-x)^3\).

Graph showing plots of f(-x)=(-x)^3 & f(x)=x^3

Question

If \(f(x)\) goes through the point (2, 4) then what is the equivalent point in the following functions?

  1. \(f(x) + 1\)
  2. \(f(x + 2)\)
  3. \(-f(x)\)
  4. \(f(-x)\)

Remember:

  • \(y = f(x) + a \rightarrow\) translate up/down by the vector \(\begin{pmatrix} 0 \\ a \end{pmatrix}\)
  • \(y = f(x + a) \rightarrow\) translate left/right by the vector \(\begin{pmatrix} -a \\ 0 \end{pmatrix}\)
  • \(y = -f(x) \rightarrow\) reflect in the \(x\)-axis
  • \(y = f(-x) \rightarrow\) reflect in the \(y\)-axis